NASA revela cómo suena un agujero negro

Compartir en:

El Financiero,  Ciudad de México, Mexico, 

La NASA reveló un inquietante audio de video de ondas de sonido saliendo de un agujero negro supermasivo, en lo que se conoce como el cúmulo de galaxias de Perseo. Está ubicado a 250 millones de años luz de distancia.

Las ondas acústicas que provienen del agujero negro se han transpuesto 57 y 58 octavas hacia arriba para que sean audibles para el oído humano. La NASA hizo esto evidente el audio el domingo 22 de agosto, que la agencia espacial estadounidense describió como el sonido de un agujero negro.

“La idea errónea de que no hay sonido en el espacio se origina porque la mayor parte del espacio es un vacío, lo que no permite que las ondas de sonido viajen. Un cúmulo de galaxias tiene tanto gas que hemos captado el sonido real. Aquí está amplificado y mezclado con otros datos, para escuchar un agujero negro”, tuiteó la cuenta de la NASA dedicada a los exoplanetas.

Agujero negro, primera vez audible al oído humano

Es la primera vez que estas ondas sonoras se extraen y se hacen audibles para el ser humano. Es una especie de aullido sobrenatural que suena no solo terrorífico, sino que a la vez es impresionante el “grito” del espacio.

En 2003, los astrónomos detectaron algo realmente asombroso: ondas acústicas que se propagaban a través de las copiosas cantidades de gas que rodeaban el agujero negro supermasivo en el centro del cúmulo de galaxias de Perseo, que ahora es famoso por sus inquietantes gemidos.

El cúmulo de galaxias que se está “escuchando es Perseo”. Los datos provienen del Observatorio de rayos X Chandra de la NASA, y la grabación se reveló por primera vez en mayo, para la Semana del Agujero Negro de la NASA.

“Los astrónomos descubrieron que las ondas de presión enviadas por el agujero negro causaron ondas en el gas caliente del cúmulo que podrían traducirse en una nota, una que los humanos no pueden escuchar unas 57 octavas por debajo del C medio”, explicó la NASA.





Sombra de un agujero negro pone a prueba teoría de la relatividad de Einstein

Compartir en:

El Universal,  Ciudad de México, Mexico, 

La teoría de la relatividad general de Albert Einstein, la idea de que la gravedad es materia que deforma el espacio-tiempo, ha resistido más de un siglo de pruebas, la última frente al análisis de la sombra de un agujero negro, según un estudio que publica hoy Physical Review Letters.


La prueba enfrentó al agujero negro supermasivo en centro de la galaxia Messier 87 (M87) -el primero del que se ha tomado una imagen- y la tesis de Einstein, quien fue el primero en formular la teoría que los predice, aunque nunca llegó a entenderlos ni aceptarlos.


Un equipo internacional de investigadores midió la distorsión visual provocada cuando la gravedad de un agujero negro curva el espacio-tiempo y descubrió que el tamaño de la sombra corrobora las predicciones de la relatividad general.


Una prueba de gravedad en el borde de un agujero negro supermasivo representa una primicia para la física y ofrece una prueba más de que la teoría de Einstein permanece intacta incluso en las condiciones más extremas, según señala el Instituto de Estudios Avanzados (EU), uno de los firmantes de la investigación.


El estudio se centró en un espacio de parámetros previamente inexplorados para la investigación de los agujeros negros.


La sombra de los agujeros negros es diferente de las que se encuentran en la vida cotidiana, pues mientras un objeto físico proyecta una sombra impidiendo que la luz pase a través de él, un agujero negro puede crear el efecto de una sombra desviando la luz hacia sí mismo.

Aunque la luz no puede escapar del interior de un agujero negro, es posible -aunque improbable- que la luz escape de la región que rodea el horizonte de sucesos, dependiendo de su trayectoria. El resultado es una tierra de nadie justo más allá del punto de no retorno, que aparece a los observadores como una sombra.


A pesar de sus éxitos, la teoría de Einstein sigue siendo matemáticamente irreconciliable con la mecánica cuántica -la comprensión científica del mundo subatómico- y una teoría definitiva del universo debe abarcar tanto la gravedad como la mecánica cuántica.


"Esperamos que una teoría completa de la gravedad sea diferente a la de la relatividad general, pero hay muchas maneras de modificarla. Consideramos que cualquiera que sea la teoría correcta, no puede ser significativamente diferente de la relatividad general cuando se trata de agujeros negros", destacó Dimistrios Psaltis, de la Universidad de Arizona y director de la investigación.


El equipo comprobó que las diversas formas de modificar la teoría de la relatividad general "fallan" en esta nueva prueba de medir la sombra de los agujeros negro, según Fryal Özel, y miembro de la colaboración Telescopio Event Horizon (EHT), que el año pasado logró la imagen del agujero negro en el centro de M87. 





Einstein y Hawking: el "baile" de 2 gigantescos agujeros negros

Compartir en:

El Universal,  Ciudad de México, Mexico, 

Existe un "baile" en el espacio que sucede dos veces cada 12 años y los protagonistas son dos agujeros negros.

Y con el estudio de uno de esos eventos, unos astrónomos pudieron probar las consecuencias clave de las teorías del físico Alberto Einstein.

Uno de estos objetos es un verdadero coloso, se trata de un agujero que pesa 18.000 millones de veces la masa de nuestro Sol. Y el otro no es tan grande, "solo" unas 150 millones de veces la masa solar.

Y los científicos lograron predecir sus interacciones con mucha precisión.

Lo hicieron al incluir sus efectos de deformación en el espacio-tiempo y al suponer que el agujero más grande tenía una "superficie" lisa.

La pareja de agujeros negros, de la galaxia conocida como OJ 287, se encuentra a unos 3.500 millones de años luz de la Tierra.

Un baile que se repite

Los científicos han seguido durante mucho tiempo el repentino brillo que se produce en este sistema y que ocurre dos veces cada 12 años.

El estallido de energía es equivalente a un billón de soles que se encienden a la vez en la galaxia anfitriona de los agujeros.

La mejor explicación para este comportamiento extraordinario es que el objeto más pequeño se estrella contra el disco de gas y polvo que se acumula en su compañero más grande de forma rutinaria, haciendo que el material alcance temperaturas muy altas.

Pero estos eventos son irregulares. Tienen lugar cada dos cada 12 años, pero a veces pasa un año desde que ocurrió el anterior y otras veces hasta 10.

Esto habla de la complejidad de la órbita que dibuja el agujero más pequeño alrededor del grande, un factor que el equipo de investigación ha incorporado a un modelo altamente sofisticado.

"La órbita del agujero negro más pequeño tiene (un movimiento de) precesión. Es por eso que los tiempos de los impactos varían", explicó el profesor Mauri Valtonen, de la Universidad de Turku, en Finlandia.

La precesión o movimiento de precesión está asociado al cambio de dirección en el espacio que experimenta el eje instantáneo de rotación de un cuerpo. Para dar una idea, es el movimiento de oscilación que realiza un trompo.

"Ya en 1996 teníamos un modelo que predecía más o menos lo que sucedería. Pero ahora somos cada vez más precisos", le dijo Valtonen a la BBC.

Uno de los parámetros importantes que toma en cuenta el modelo actualizado es la energía que irradia del sistema en forma de ondas gravitacionales.

La teoría de la relatividad general, muy simplificada, sostiene que la gravedad surge de la curvatura del espacio-tiempo. Baste imaginar el universo como un tejido tenso cuya forma geométrica varía en función de la masa de los cuerpos celestes que se disponen sobre él.

Bajo esta premisa, las órbitas de unos objetos sobre otros no repiten su trayectoria, como formulaba la gravitación definida por el físico Isaac Newton, sino que siguen un movimiento de precesión, lo que significa que la trayectoria cambia con cada giro.

En las condiciones supermasivas del OJ 287, las ondas tienen una influencia significativa en la forma en la que opera el sistema.

Una observación afortunada

La gran prueba para este último modelo tuvo lugar el 31 de julio del año pasado, cuando se identificó el fenómeno más reciente dentro de las 2,5 horas previstas por las ecuaciones.

El evento fue capturado por el telescopio infrarrojo Spitzer, de la agencia espacial estadounidense NASA.

Se trató de una observación afortunada ya que resultó que el OJ 287 estaba en el lado opuesto del Sol a la Tierra en ese momento y, por lo tanto, fuera de la vista de las instalaciones terrestres.

Por otro lado, la lejanía de Spitzer de la Tierra (160 millones de km) lo colocó en una posición privilegiada.

"Cuando verifiqué por primera vez la visibilidad de OJ 287, me sorprendió descubrir que el Spitzer lo captó justo el día en que se pronosticaba tendría lugar el primer brillo", describió Seppo Laine, científico del Instituto de Tecnología de California (Caltech) de EE.UU., quien supervisa las observaciones del Spitzer.

"Fue extremadamente afortunado que pudiéramos capturar el pico de este impacto con el Spitzer, porque ningún otro instrumento hecho por el hombre ha sido capaz de lograr esta hazaña en el momento específico".

Teorema "sin pelo"

Otro detalle que tuvo en cuenta el modelo fueron las características físicas del agujero negro más grande. Específicamente, su rotación.

Varios científicos, incluido el fallecido Stephen Hawking, desarrollaron lo que se conoció como el teorema "sin pelo" de los agujeros negros.

Este esencialmente establece que la superficie, o "horizonte de sucesos", de un agujero negro a lo largo de su eje de rotación es simétrica: no hay grumos ni protuberancias.

Se cree que la observación de OJ 287 es la mejor prueba hasta ahora del teorema "sin pelo".

El profesor Achamveedu Gopakumar, del Instituto Tata de Investigación Fundamental, en India, trabajó en el modelo sobre las ondas gravitacionales junto con el estudiante graduado Lankeswar Dey.

El profesor habló de su "euforia" al ver llegar los datos del Spitzer. Ahora está esperando que OJ 287 sea fotografiado por el telescopio Event Horizon (EHT), que captó la primera imagen de un agujero negro el año pasado.

"Con el EHT se hicieron observaciones tanto en 2017 como en 2018. Las otras campañas están suspendidas (debido al coronavirus) y esperamos tener tiempo durante la campaña 2021", dijo a la BBC.




Descubren el motivo por el que los agujeros negros se oscurecen

Compartir en:

Las observaciones hechas por un equipo internacional de astrónomos del Observatorio Nacional de Astronomía Óptica (NOAO, por sus siglas en inglés) apuntan a que enormes cantidades de polvo cósmico en la galaxia de acogida de los agujeros negros pueden tener un rol importante en su oscurecimiento.

Nuestra inspección de la cercana galaxia NGC 7582 -a 74 millones de años luz de la Tierra-, que alberga un núcleo activo muy oscurecido, revela la existencia de un viento poderoso lanzado por su agujero negro activo que provoca un anillo de gas y polvo que contribuye al extremo oscurecimiento de este agujero", destacó hoy la investigadora del NOAO, Stephanie Juneau, en una rueda de prensa.

El anuncio se produjo durante la 230 edición del encuentro de la Sociedad Astronómica Americana (AAS, en sus siglas en inglés), que reúne a más de 600 personas desde el 4 hasta el 8 de junio en Austin, para divulgar los últimos descubrimientos astronómicos logrados por investigadores y universidades estadounidenses.

La doctora francesa ofreció la conferencia de prensa conjuntamente con otros colegas de profesión, como Richard O'Shaugnessy, del Instituto de Tecnología de Rochester (Nueva York) o Chris Shrader, del Centro de Vuelo Espacial de Goddard (Kansas) de la NASA.

Los resultados de la investigación liderada por Juneau dan nuevas perspectivas sobre la interacción entre los agujeros negros y sus galaxias de acogida, dado que hasta ahora se creía comúnmente que el oscurecimiento extremo de los agujeros negros solo podía producirlo un anillo compacto cercano a las inmediaciones del propio agujero.

Los agujeros negros supermasivos son literalmente invisibles para nosotros, porque no emiten luz, pero a medida que la materia cae sobre su horizonte de eventos, esta se calienta y produce radiación que se puede observar a través del espectro electromagnético", relató la científica francesa.

Este proceso, que se produce en lo que se llama el núcleo galáctico activo (el núcleo de una galaxia que contiene un agujero negro supermasivo) hace que la materia brille de forma que se pueda detectar a miles de millones de años luz de distancia, pero solo si las condiciones son favorables.

Así, apuntó que el análisis de rayos X cósmico, que registra la alimentación integrada de agujeros negros, indica la existencia de una "misteriosa población" de núcleo activo oscurecido en la galaxia NGC 7582, que alimenta este agujero negro "profundamente" envuelto de gas y polvo.



Captan en foto, por primera vez en la historia, un agujero negro

Compartir en:

Un equipo internacional de astrónomos cree haber logrado hoy, por primera vez en la historia, imágenes de un agujero negro, informó en su versión digital la revista National Geographic.

Las imágenes corresponderían, concretamente, al horizonte de sucesos, una de las partes que componen un agujero negro, según explicó a National Geographic Vincent Fish, científico del Observatorio Haystack de Massachusetts y uno de los astrónomos involucrados en la investigación.

El horizonte de sucesos es una frontera donde espacio y tiempo terminan tal y como los conocemos.

No obstante, Fish alertó que la información obtenida todavía debe procesarse y que el equipo tendrá que esperar algunos meses para comprobar si las imágenes realmente corresponden al agujero negro.

Los astrónomos tenían como objetivo fotografiar dos agujeros negros, el Sagittarius A, en el corazón de la Vía Láctea, y uno de mayor tamaño en la galaxia elíptica M87.

Las imágenes se obtuvieron por medio de la colaboración de una red mundial de observatorios con radiotelescopios llamada "Telescopio Horizonte de Sucesos" entre los que se encuentran el español IRAM Pico Veleta, el mexicano LMT o varios ubicados en el desierto de Atacama (Chile).